Развијеност компоненти појма мерење дужине код ученика првог разреда основне школе
Милица Д. Антић, ОШ „Бранко Ћопић“, Београд
Оливера Ј. Ђокић, Универзитет у Београду, Учитељски факултет, имејл: olivera.djokic@uf.bg.ac.rs
Иновације у настави, XXXI, 2018/1, стр. 58–74
| PDF | | Extended summary PDF |
doi: 10.5937/inovacije1801058A
Резиме: Резултати међународних истраживања, нпр. ТИМСС, показују да је ученичко разумевање геометријских садржаја често на нижем нивоу у односу на садржаје других области математике. Како бисмо открили узрок, усредсредили смо се на почетак основношколског математичког образовања тражећи основне разлоге нижег постигнућа ученика у овој области. Испитивали смо успешност ученика првог разреда у области Мерење и мере, са акцентом на мерење дужине. Циљ рада је био да утврдимо колико су ученици првог разреда успешно овладали појмом мерење дужине, који се састоји од компоненти на којима се заснива поступак мерења; реч је о следећим компонентама: раздељивање, надовезивање мерне јединице, транзитивност, конзервација, акумулација удаљености и релација између мерног броја и мерне јединице. Примењена је дескриптивна метода. Основни закључци рада јесу да код ученика постоји велики јаз у усвојености појма мерење дужине и компонентама од којих је појам састављен, као и да тада важећи наставни програм из математике, који је утицао на рад учитеља и на ауторе уџбеника, није пружао сигурну основу и подршку учитељима у раду. Нови План и програм наставе и учења за први разред делимично садржи измене које су у складу са резултатима нашег истраживања. Па ипак, за даља истраживања предлажемо сагледавање формирања појма мерење дужине кроз све његове компоненте, и то кроз практичне подстицаје и просторно искуство ученика, као и кроз примере у којима би ученици уочавали односе тела у простору, упоређивали величине тела и сл.
Кључне речи: мерење дужине, компоненте појма мерење дужине, почетна настава геометрије, наставни програм.
Summary: Results of the international research, for example TIMSS, show that student’s understanding of geometrical contents is often below the level in comparison the contents of other areas of mathematics. For revealing the cause, we focused on the beginning of primary school mathematical education, searching for the basic results of the lower achievements of students in this field. We studied achievements o students of the first grade in the field of Measuring and Measurements, with the stress on measuring length. The aim of the paper was to determine in which extent the students of the first grade were successful in mastering the term of measuring length, which is composed on components upon which the procedure of measuring is established. The following components are in question: dividing, sequencing the measuring unit, transitivity, conservation, accumulation of the distance and relation between the measuring number and measuring unit. Descriptive method was used. The basic conclusion of the paper are that there is a huge gap concerning adoption of the term measuring length and the components out of which it is composed, as well as that the existing mathematics syllabus in those days, which influenced the work of teachers and authors of the course book did not offer sage basis and support to teachers’ work. New syllabus for the first grade contains some changes in accordance with the results of our research. Nevertheless, for the further research we suggest observing the forming of the term measuring length through all its components, and this would be through practical stimulation and special experience of students, as well as through examples in which the students would observe the relations of the objects in space, compare the sizes of the bodies, etc.
Key words: measuring length, components of the term measuring length, initial teaching geometry, and syllabus.
Литература
- Antić, M. (2017). Uvođenje pojma merenja dužine u početnoj nastavi matematike (master rad). Beograd: Učiteljski fakultet Univerziteta u Beogradu.
- Banđur, V., Potkonjak, N. (2006). Istraživački rad u školi: akciona istraživanja. Beograd: Školska knjiga.
- Barrett, J. E. & Clements, D. H. (2003). Quantifying Path Length: Fourth-Grade Children’s Developing Abstractions for Linear Measurement. Cognition and Instruction. 21(4), 475–520. DOI: 10.1207/s1532690xci2104_4
- Barrett, Ј. Е., Јones, G., Thornron, C. & Dickson, S. (2003). Understanding children’s development strategies and concepts for length. In: Clements, D. & Bright, G. (Eds.). Learning and teaching measurement (17–30). Virginia: National Council of Teachers of Mathematics.
- Battista, M. T. (2006). Understanding the development of students’ thinking about length. Teaching Children Mathematics. 13 (3), 140–146.
- Blagdanić, S. (2014). Obrazovni standardi. U: Leksikon obrazovnih termina (530–531). Beograd: Učiteljski fakultet.
- Božin, A. (2014). Konzervacija. U: Leksikon obrazovnih termina (326–327). Beograd: Učiteljski fakultet.
- Bragg, P. & Outhred, L. (2004). A measure of rulers – the importance of units in a measure. In: Høines, M. J. & Fuglestad, A. B. (Eds.). Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education 2 (159–166). July 14–18, 2004. Bergen, Norway: Bergen University College.
- Buys, K. & De Moor, E. (2008). Domain Description Measurement. In: Van den Heuvel-Panhuizen, M. & Buys, K. (Eds.). Young children learn Measurement and Geometry (15–36). Rotterdam: Sense Publishers.
- Carpenter, T. P. & Lewis, R. (1976). The Development of the Concept of a Standard Unit of Measure in Young Children. Journal for Research in Mathematics Education. 7 (1), 53–58. DOI: 10.2307/748765
- Cobb, P. (2003). Investigating Students’ Reasoning about Linear Measurement as a Paradigm Case of Design Research. In: Stephan, M., Bowers, J., Cobb, P. & Gravemeijer, K. (Eds.). Supporting Students’ Development of Measuring Conceptions: Analyzing Students’ Learning in Social Context (1–16). Reston, VA: National Council of Teachers of Mathematics.
- Đokić, O. (2006). Uloga intuicije u nastavi geometrije. Inovacije u nastavi. 19 (2), 21–27.
- Đokić, O. (2014a). Mere i merenje. U: Leksikon obrazovnih termina (388–389). Beograd: Učiteljski fakultet.
- Đokić, O. (2014b). Realno okruženje u početnoj nastavi geometrije. Inovacije u nastavi. 27 (2), 7–21. DOI:10.5937/inovacije1402007D.
- Jelić, M., Đokić, O. (2017). Ka koherentnoj strukturi udžbenika matematike – analiza udžbenika prema strukturnim blokovima TIMSS istraživanja. Inovacije u nastavi. 30 (1), 67–81. DOI: 10.5937/inovacije1701067J
- Đokić, O., Zeljić, M. (2017). Teorije razvoja geometrijskog mišljenja prema Van Hilu, Fišbajnu i Udemon-Kuzniaku. Teme. XLI (3), 623–637. DOI: 10.22190/TEME1703623D.
- Gravemeijer, K. (2014). Number Lines in Mathematics Education. In: Encyclopedia of Mathematics Education (466–470). Dordrecht: Springer Reference. DOI: 10.1007/978-94-007-4978-8
- Hiebert, J. (1981). Cognitive Development and Learning Linear Measurement. Journal for Research in Mathematics Education. 12 (3), 197–211. DOI: 10.2307/748928
- Kamii, C. & Clark, F. (1997). Measurement of Length: The Need for a Better Approach to Teaching. School Science and Mathematics. 97 (3), 116–121. DOI: 10.1111/j.1949-8594.1997.tb17354.x
- Lehrer, R. (2003). Developing Understanding of Measurement. In: Kilpatrick, J., Martin, W. & Schifter, D. (Eds.). A Research Companion to Principles and Standards for School Mathematics (179–192). Reston, VA: National Council of Teachers of Mathematics.
- Maričić, S., Špijunović, K. (2013). Stavovi učitelja o funkciji i značaju obrazovnih standarda u podizanju kvaliteta početne nastave matematike. U: Nikolić, R. (ur.). Nastava i vaspitanje – kvalitet vaspitno–obrazovnog procesa (445–454). Užice: Učiteljski fakultet u Užicu.
- Parmar, R., Garrison, R., Clements, D. & Sarama, J. (2011). Measurement. In: Fennell, F. (еd.). Achieving Fluency in Special Education and Mathematics (197–215). Reston, VA: National Council of Teachers of Mathematics.
- Pijaže, Ž., Inhelder, B. (1996). Intelektualni razvoj deteta – izabrani radovi. Beograd: Zavod za udžbenike i nastavna sredstva.
- Ryan, J. & Williams, J. (2007). Children’s mathematics 4–15: Learning from errors and misconceptions. Maidenhead: McGraw Hill/Open University Press.
- Sarama, J. & Clements, D. H. (2009). Early Childhood Mathematics Education Research. New York: Routledge.
- Smith III, J. P., Males, L. M., Dietiker, L. C., Lee, K. & Mosier, A. (2013). Curricular Treatments of Length Measurement in the United States: Do They Address Known Learning Challenges?. Cognition and Instruction. 31 (4), 388–433. DOI: 10.1080/07370008.2013.828728
- Stephan, M. & Clements, D. H. (2003). Linear and Area Мeasurement in Prekindergarten to Grade 2. In: Clements, D. H. & Bright, G. (Eds.). Learning and Teaching Measurement: 2003 yearbook (3–16). Reston, VA: National Council of Teachers of Mathematics.
- Tan-Sisman, G. & Aksu, M. (2012). The length measurement in the Turkish mathematics curriculum: It’s potential to contribute to students learning. International Journal of Science and Mathematics Education. 10 (2), 363–385. DOI: 10.1007/s10763-011-9304-1
- Van de Walle, J. A., Karp, K. S., Bay-Williams, J. M. & Wray, J. (2013). Elementary and middle school mathematics: teaching developmentally. United States of America: Pearson Education.
- Zöllner, J. & Benz, C. (2013). How Four to Six Year Old Children Compare Length Indirectly. In: Ubuz, B., Haser, Ç. & Mariotti, M. A. (Еds.). CERME 8: Proceedings of the Eight Congress of the European Society for Research in Mathematics Education (2258–2267). February 6–10, 2013. Manavgat-Side/Antalya, Turkey: Middle East Technical University.
- Zöllner, J. & Benz, C. (2016). „I spy with my little eye“: Different components of a Concept of the Length. In: Meaney, T., Helenius, O., Johansson, M. L., Lange, T. & Wernberg, A. (Еds.). Mathematics Education in the Early Years (359–370). Results from the POEM2 Conference 2014, November 12–13, Manchester, UK. Springer International Publishing.
Copyright © 2018 by the authors, licensee Teacher Education Faculty University of Belgrade, SERBIA. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original paper is accurately cited.