Унапређивање хемијске писмености ученика основних школа кроз контекстуални приступ обради наставне јединице Алкани

Катарина Б. Путица, Иновациони центар Хемијског факултета у Београду, Београд, Србија, имејл: puticakatarina@gmail.com
Лидија Р. Ралевић, Универзитет у Београду, Хемијски факултет, Београд, Србија

| PDF | | Extended summary PDF |
DOI: 10.5937/inovacije2201091P

 

Резиме: Органска хемија представља есенцијални део свакодневног живота, али претходна истраживања указују да традиционална настава органске хемије, фокусирана на трансмисију академских знања, недовољно подстиче развој ученичке хемијске писмености у овој области. Будући да контекстуални приступ настави има потенцијал да унапреди научну писменост, ради поређења ефективности поменута два наставна приступа у погледу развоја хемијске писмености ученика основних школа у области органске хемије, спроведен је педагошки експеримент са паралелним групама. Експеримент је организован у оквиру обраде наставне јединице Алкани и у њему је учествовало 148 ученика осмог разреда основне школе (76 ученика у експерименталној и 72 ученика у контролној групи). Кроз обраду градива о алканима ученици развијају хемијску писменост, која је у вези са структуром и номенклатуром ових једињења, њиховим физичким и хемијским својствима, те нафтом и нафтним дериватима као изворима енергије, али и загађивачима животне средине. Након обраде поменуте наставне јединице експериментална група је остварила статистички значајно већи укупан проценат тачних одговора на тесту, којим је проверена развијеност ученичке хемијске писмености о алканима на сва три њена нивоа (знање, примена и резоновање), што указује да би контекстуални приступ настави могао значајно да унапреди хемијску писменост ученика основних школа у области органске хемије.

Кључне речи: хемијска писменост, органска хемија, контекстуални приступ настави, ученици основних школа.

Abstract: Organic chemistry represents an essential part of everyday life, but previous research indicates that traditional organic chemistry teaching, which focuses on the transmission of academic content, insufficiently promotes the development of pupils’ chemical literacy in this field. Since context-based teaching approach has the potential to improve scientific literacy, in order to compare the effectiveness of the aforementioned teaching approaches in terms of developing elementary school pupils’ chemical literacy in the field of organic chemistry, a pedagogical experiment with parallel groups was conducted. The experiment was organized within the elaboration of the teaching unit Alkanes and it encompassed 148 eighth-grade elementary school pupils (76 pupils in the experimental and 72 pupils in the control group). Through the elaboration of the content about alkanes, pupils develop chemical literacy in regard to the structure and nomenclature of these compounds, their physical and chemical properties and oil and its derivatives as energy sources, as well as environmental pollutants. Upon the elaboration of the abovementioned teaching unit, the experimental group achieved a significantly higher overall percentage of correct answers on the test that checked the development of pupils’ chemical literacy in regard to alkanes on all three levels (knowledge, application and reasoning), which implies that context-based teaching approach could significantly enhance elementary school pupils’ chemical literacy, in the field of organic chemistry.

Keywords: chemical literacy, organic chemistry, context-based teaching approach, elementary school pupils.

Литература:

  • Akkuzu, N. & Uyulgan, M. A. (2015). An epistemological inquiry into organic chemistry education: exploration of undergraduate students’ conceptual understanding of functional groups. Chemistry Education Research and Practice, 17 (1), 36–57. DOI: 10.1039/C5RP00128E
  • Аusubel, P. D. (2000). The Acquisition and Retention of Knowledge-A Cognitive View. Dordrecht/Boston/London: Kluwer Academic Publishers.
  • Bennet, J. & Lubben, F. (2006). Context-based chemistry: The Salters approach. International Journal of Science Education, 28 (4), 999–1015. DOI: 10.1080/09500690600702496
  • Broman, K. & Parchmann, I. (2014). Students’ application of chemical concepts when solving chemistry problems in different contexts. Chemistry Education Research and Practice, 15 (4), 516–529. DOI: 10.1039/C4RP00051J
  • Cigdemoglu, C. & Geban, O. (2015). Improving students’ chemical literacy levels on thermochemical and thermodynamics concepts through a context-based approach. Chemistry Education Research and Practice, 16 (2), 302–317. DOI: 10.1039/C5RP00007F
  • Demircioğlu, H., Demircioğlu, G. & Çalik, M. (2009). Investigating the effectiveness of storylines embedded within a context-based approach: the case for the Periodic Table. Chemistry Education Research and Practice, 10 (3), 241–249. DOI: 10.1039/B914505M
  • Dennen, V. P. & Bruner, K. J. (2008). The cognitive apprenticeship model in educational practice. In: Spector, J. M., Merrill, M. D., Van Merriënboer, J. G. & Driscoll, M. P. (Eds.). Handbook of Research on Educational Communications and Technology (425–439). Mahwah, NJ: Lawrence Erlbaum Associates Inc.
  • Dewey, J. (1916). Democracy and Education. New York: Free Press.
  • Duggan, S. & Gott, R. (2002). What sort of science education do we really need? International Journal of Science Education, 24 (7), 661–679. DOI: 10.1080/09500690110110133
  • Elkind, D. (2004). The problem with constructivism. The Educational Forum, 68 (4), 306–312. DOI:10.1080/00131720408984646
  • Forsthuber, B., Motiejunaite, A., De Almeida, C. & Ana, S. (2011). Science Education in Europe: National Policies, Practices and Research. Brussels: EURYDICE.
  • Gilbert, J. K. (2006). On the nature of „context” in chemical education. International Journal of Science Education, 28 (9), 957–976. DOI: 10.1080/09500690600702470
  • Godin, E. A., Kwiek, N., Sikes, S. S., Halpin, M. J., Weinbaum, C. A., Burgette, L. F., Reiter, J. P. & Schwartz-Bloom, R. D. (2014). Alcohol pharmacology education partnership: using chemistry and biology concepts to educate high school students about alcohol. Journal of Chemical Education, 91 (2), 165–172. DOI: 10.1021/ed4000958
  • King, D. (2016). Teaching and learning in context-based science classes. In: Taconis, R., Brok, P. & Pilot, A. (Eds.). Teachers Creating Context-Based Learning Environments in Science: Advances in Learning Environments Research (71–85). Rotterdam: Sense Publishers.
  • Linnenbrink-Garcia, L., Pattal, E. A. & Messersmith, E. E. (2013). Antecedents and consequences of situational interest. British Journal of Educational Psychology, 83 (4), 591–614. DOI: 10.1111/j.2044-8279.2012.02080.x
  • Mandić, Lj., Korolija, J. i Danilović, D. (2010). Hemija za osmi razred osnovne škole. Beograd: Zavod za udžbenike i nastavna sredstva.
  • O’Dwyer, A. & Childs, P. (2014). Organic chemistry in action! Developing an intervention program for introductory organic chemistry to improve learner’s understanding, interest and attitudes. Journal of Chemical Education, 91 (7), 987–993. DOI: 10.1021/ed400538p
  • Putica, K., Trivić, D. (2019). Efekti primene metode učenja putem rešavanja problema u nastavi prirodnih nauka. Inovacije u nastavi, 32 (4), 21–31. DOI: 10.5937/inovacije1904021P
  • Schleicher, A., Zimmer, K., Evans, J. & Clements, N. (2009). PISA 2009 Assessment Framework-Key Competencies in Reading, Mathematics and Science. Paris: OECD Publishing.
  • Schwartz, A. T. (2006). Contextualized chemistry education: The American experience. International Journal of Science Education, 28 (9), 977–998. DOI: 10.1080/09500690600702488
  • Stanišić, J. (2016). Karakteristike časova ekološkog obrazovanja u osnovnoj školi. Inovacije u nastavi, 29 (4), 87–100. DOI: 10.5937/inovacije1604087S
  • Trivić, D., Lazarević, E. i Bogdanović, M. (2011). Postignuće učenika i nastava hemije. U: Gašić Pavišić, S. i Stanković, D. (ur.). TIMSS 2007 u Srbiji (97–145). Beograd: Institut za pedagoška istraživanja.
  • Tytler, R. (2007). Re-imagining Science Education: Engaging Students in Science for Australia’s Future. Melbourne: Australian Council for Educational Research.
  • Videnović, M., Čaprić, G. (2020). PISA 2018 Izveštaj za Republiku Srbiju. Beograd: Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije.
Language selection
Open Access Statement
345 Open access declaration can be found on this page

Information about copyright 345 Teaching Innovations are licensed with Creative Commons Attribution License (CC BY 4.0). Information about copyright can be found on this page.
Open Access Journal
345
Indexed by
345 This journal was approved on 2018-01-22 according to ERIH PLUS criteria for inclusion. Download current list of ERIH PLUS approved journals.
Indexed by
345 University of Belgrade, Teacher Education Faculty has entered into an electronic licensing relationship with EBSCO Information Services, the world's most prolific aggregator of full text journals, magazines and other sources. The full text of Teaching Innovations / Inovacije u nastavi is available now on EBSCO's international research databases.
Indexed by
345
Ethics statement
345 Publication ethics and publication malpractice statement can be found on this page.
Follow Teaching Innovations
345   345   345