Како ученици осмог разреда основне школе и првог разреда гимназије интерпретирају репрезентације структуре и састава супстанци

Драгица Д. Тривић, Универзитет у Београду, Хемијски факултет, Београд, Србија, имејл: dtrivic@chem.bg.ac.rs
Лидија Р. Ралевић, Универзитет у Београду, Хемијски факултет, Београд, Србија
Биљана И. Томашевић, Универзитет у Београду, Хемијски факултет, Београд, Србија
Иновације у настави, XXXIV, 2021/3, стр. 95–109

| PDF | | Extended summary PDF |
DOI: 10.5937/inovacije2103095T

 

Резиме: Циљ овог истраживања јесте да се испита како ученици осмог разреда основне школе и првог разреда гимназије интерпретирају репрезентације структуре и састава супстанци, и колико су успешни у трансформисању репрезентација једног нивоа у други. У истраживању су учествовала укупно 193 ученика, и то 81 ученик осмог разреда основне школе и 112 ученика првог разреда гимназије. Према циљу истраживања и истраживачким питањима припремљен је тест чији су се захтеви односили на различите нивое репрезентација у вези са структуром атома, молекула и јона, хемијском везом, чистим супстанцама и смешама. Ученици првог разреда гимназије остварили су статистички значајно боље укупно постигнуће на тесту у односу на ученике осмог разреда oсновне школе. Резултати истраживања су показали да репрезентације субмикроскопског нивоа мање помажу ученицима осмог разреда основне школе у разумевању структуре атома, молекула и јона, као и састава чистих супстанци и смеша, док су ученици првог разреда гимназије успешнији у њиховој интерпретацији. Осим тога, резултати истраживања су показали да постоје проблеми у превођењу значења једног нивоа репрезентација на други, поготову када се информације посредују помоћу репрезентација субмикроскопског нивоа.

Кључне речи: хемија, основна школа, гимназија, репрезентације.

 

Summary: The aim of this research is to examine how students in the eighth grade of elementary school and the first grade of high school interpret the representations of the structure and composition of substances and how successful they are in transforming the representations of one level into another. A total of 193 students participated in the research, 81 students of the eighth grade of elementary school and 112 students of the first grade of high school. According to the aim of the research and research questions, a test was prepared whose requirements referred to different levels of representations related to the structure of atoms, molecules and ions, chemical bonds, pure substances and mixtures. The students in the first grade of high school achieved a statistically significantly better overall achievement on the test compared to the students in the eighth grade of elementary school. The results of the research show that submicroscopic level representations help the eighth-grade students less in understanding the structure of atoms, molecules and ions, as well as the composition of pure substances and mixtures, while the first-grade high school students are more successful in their interpretation. In addition, the research results have shown that there are problems in translating the meaning of one level of representations to another, especially when information is conveyed using submicroscopic-level representations.

Кeywords: chemistry, elementary school, high school, representations.

 

Литература

  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33 (2–3), 131–152. DOI: 10.1016/S0360-1315(99)00029-9
  • Ben-Zvi, R., Eylon, B. & Silberstein, J. (1987). Students’ Visualisation of a Chemical Reaction. Education in Chemistry, 24 (4), 117–120.
  • Ben-Zvi, R., Eylon, B. & Silberstein, J. (1988). Theories, principles and laws. Education in Chemistry, 25 (3), 89–92.
  • Chittleborough, G. & Treagust, D. F. (2007). The modeling ability of non-major chemistry students and their understanding of the sub-mucroscopic level. Chemistry Education Reseaech and Practice, 8 (3), 274–292. DOI: 10.1039/B6RP90035F
  • Clark, J. & Paivio, A. (2006). Dual coding theory and education. Educational Psychology Review Journal of Science Education, 3 (3), 149–210. DOI: 10.1007/BF01320076
  • Driver, R., Asoko, H., Leach, J., Mortimer, E. & Scott, P. (1994). Constructing Scientific Knowledge in the Classroom. Educational Researcher, 23 (7), 5–12. DOI: 10.3102/0013189X023007005
  • Gabel, D. L. & Bunce, D. M. (1994). Research on chemistry problem solving. In: Gabel, D. L. (Ed.). Handbook of Research on Science Teaching and Learning (301–326). New York: MacMillan.
  • Gabel, D. (1999). Improving teaching and learning through chemistry education research: A look to the future. Journal of Chemical Education, 76 (4), 548–554. DOI: 10.1021/ed076p548
  • Gilbert, J. K. & Treagust, D. F. (2010). Introduction: Macro, Submicro and Symbolic Representations and the Relationship Between Them: Key Models in Chemical Education. In: Gilbert, J. K. & Treagust, D. (Eds.). Multiple Representations in Chemical Education (1–8). Springer.
  • Gkitzia, V., Salta, K. & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks. Chemistry Education Research and Practice, 12 (1), 5–14. DOI: 10.1039/C1RP90003J
  • Head, M. L., Yoder K., Genton, E. & Sumperl, J. (2017). A quantitative method to determine preservice chemistry teachers’ perceptions of chemical representations. Chemistry Education Research and Practice, 18 (4), 825–840. DOI: 10.1039/c7rp00109f
  • Hinton, M. E. & Nakhleh, M. B. (1999). Students’ Microscopic, Macroscopic and Symbolic Representations of Chemical Reactions. The Chemical Educator, 4 (5), 158–167. DOI: 10.1007/s00897990325a
  • Jaber, L. Z. & BouJaoude, S. (2012). A Macro–Micro–Symbolic Teaching to Promote Relational Understanding of Chemical Reactions. International Journal of Science Education, 34 (7), 973–998. DOI: 10.1080/09500693.2011.569959
  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70 (9), 701–705. DOI: 10.1021/ed070p701
  • Kern, A. L., Wood, N. B., Roehrig, G. H. & Nyachwayac, J. (2010). A qualitative report of the ways high school chemistry students attempt to represent a chemical reaction at the atomic/molecular level. Chemistry Education Research and Practice, 11 (3), 165–172. DOI: 10.1039/C005465H
  • Krnel, D., Watson, R. & Glažar, S. A. (1998). Survey of research related to the development of the concept of ‘matter’. International Journal of Science Education, 20 (3), 257–289. DOI: 10.1080/0950069980200302
  • Lin, Y. I., Son, J. Y. & Rudd II, J. A. (2016). Asymmetric translation between multiple representations in chemistry. International Journal of Science Education, 38 (4), 644–662. DOI: 10.1080/09500693.2016.1144945
  • Mayer, R. E. (1996). Learning strategies for making sense out of expository text: The SOI model for guiding three cognitive processes in knowledge construction. Educational Psychology Review, 8, 357–371. DOI: 10.1007/BF01463939
  • Mayer, R. E. & Moreno, R. (2005). A cognitive theory of multimedia learning: Implications for design principles. Educational Psychologist, 38 (1), 43–52.
  • Milenković, D., Segedinac, M. & Hrin, T. (2014a). Increasing high school students’ chemistry performance and reducing cognitive load through an instructional strategy based on the interaction of multiple levels of knowledge representation. Journal of Chemical Education, 91 (9), 1409–1416. DOI: 10.1021/ed400805p
  • Milenković, D., Segedinac, M., Hrin, T. & Cvjetićanin, S. (2014b). Cognitive Load at Different Levels of Chemistry Representations. Croatian Journal of Education: Hrvatski časopis za odgoj i vaspitanje, 16 (3), 699–722. Posećeno 25. 8. 2021. na www: https://hrcak.srce.hr/128202
  • Milenković, D., Segedinac, M., Hrin, T. & Horvat, S. (2016). The impact of instructional strategy based on the triplet model of content representation on elimination of students’ misconceptions regarding inorganic reaction. Journal of the Serbian Chemical Society, 81 (6), 717–728. DOI: 10.2298/JSC150812021M
  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry: Chemical misconceptions. Journal of Chemical Education, 69 (3), 191–196. DOI: 10.1021/ed069p191
  • Nakhleh, M. B. (1993). Are our students conceptual thinkers or algorithmic problem solvers?. Journal of Chemical Education, 70 (1) 52–55. DOI: 10.1021/ed070p52
  • Nelson, P. G. (2002). Teaching chemistry progressively: from substances, to atoms and molecules, to electrons and nuclei. Chemistry Education Research and Practice, 3 (2), 215–228. DOI: 10.1039/B2RP90017C
  • Nurrenbern, S. C. & Pickering, M. (1987). Concept learning versus problem solving: Is there a difference? Journal of Chemical Education, 64 (6), 508–510. DOI: 10.1021/ed064p508
  • Rodić, D., Rončević, T. & Segedinac, M. (2018). The Accuracy of Macro-Submicro-Symbolic Language of Future Chemistry Teachers. Acta Chimica Slovenica, 65 (2), 394–400. DOI: 10.17344/acsi.2017.4139
  • Sawrey, B. A. (1990). Concept learning versus problem solving: Revisited. Journal of Chemical Education, 67 (3), 253–254. DOI: 10.1021/ed067p253
  • Stamovlasis, D., Kypraios, N. & Papageorgiou, G. (2015). A SEM Model in Assessing the Effect of Convergent, Divergent and Logical Thinking on Students’ Understanding of Chemical Phenomena. Science Education International, 26 (3), 284–306.
  • Talanquer, V. (2011). Macro, submicro, and symbolic: the many faces of the chemistry „triplet“. International Journal of Science Education, 33 (2), 179–195. DOI: 10.1080/09500690903386435
  • Treagust, D. F. & Chittleborough, G. (2001). Chemistry: A matter of understanding representations. In: Brophy, J. (Ed.). Subject-specific instructional methods and activities (239–267). Bingley: Emerald Group Publishing Limited.
  • Treagust, D., Chittleborough, G. & Mamiala T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25 (11), 1353–1368. DOI: 10.1080/0950069032000070306
  • Trivić, D., Milanović, V. (2018). The macroscopic, submicroscopic and symbolic level in explanations of a chemical reaction provided by thirteen-year olds. Journal of the Serbian Chemical Society, 83 (10), 1177–1192. DOI: 10.2298/JSC171220055T
  • Yarroch, W. L. (1985). Student understanding of chemical equation balancing, Journal of Research in Science Teaching, 2 (5), 449–459. DOI: 10.1002/tea.3660220507
  • Wang, Z., Chi, S., Luo, M., Yang, Y. & Huang, M. (2017). Development of an instrument to evaluate high school students’ chemical symbol representation abilities. Chemistry Education Research and Practice, 18 (4), 875–892. DOI: 10.1039/c7rp00079k

Copyright © 2021 by the authors, licensee Teacher Education Faculty University of Belgrade, SERBIA. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original paper is accurately cited

Language selection
Open Access Statement
345 Open access declaration can be found on this page

Information about copyright 345 Teaching Innovations are licensed with Creative Commons Attribution License (CC BY 4.0). Information about copyright can be found on this page.
Open Access Journal
345
Indexed by
345 This journal was approved on 2018-01-22 according to ERIH PLUS criteria for inclusion. Download current list of ERIH PLUS approved journals.
Indexed by
345 University of Belgrade, Teacher Education Faculty has entered into an electronic licensing relationship with EBSCO Information Services, the world's most prolific aggregator of full text journals, magazines and other sources. The full text of Teaching Innovations / Inovacije u nastavi is available now on EBSCO's international research databases.
Indexed by
345
Ethics statement
345 Publication ethics and publication malpractice statement can be found on this page.
Follow Teaching Innovations
345   345   345