Дечје разумевање топлотних феномена у почетној настави природних наука

Сања Ж. Балаћ, Универзитет у Новом Саду, Педагошки факултет у Сомбору, Србија, имејл: sanjabalac@gmail.com
Марија Т. Бошњак Степановић, Универзитет у Новом Саду, Педагошки факултет у Сомбору, Србија
Ивана З. Богдановић, Универзитет у Новом Саду, Природно-математички факултет, Србија
Иновације у настави, XXXV, 2022/3, стр. 75–90

| PDF | | Extended summary PDF |
DOI: 10.5937/inovacije2203075B

 

Резиме: Начин интерпретације топлотних феномена у разредној настави, којим се избегава појашњење ових појава на основу честичне грађе супстанце, оставља простор за формирање алтернативних ученичких идеја. Циљ овог рада је да се утврди колико деца разумеју топлотне феномене у разредној настави. У ту сврху је обликован тест знања о појмовима: агрегатна стања супстанце, структура супстанце, температура, топлота и провођење топлоте. Истраживање је спроведено у основним школама у Кикинди и Сомбору на узорку од 475 ученика. Анализа резултата показује да је са најнижим постигнућима, од 0% до 20% максималног броја бодова, знатно више ученика првог и другог разреда него оних из старијих разреда. У свим разредима највише ученика остварило је између 20% и 40% максималног броја бодова. Већина ученика трећег и четвртог разреда остварила је између 40% и 80% максималног броја бодова. Није било ученика са највишим постигнућима. Утврђено је да између ученика првог и другог разреда, као и између оних у трећем и четвртом, не постоје статистички значајне разлике у постигнућима, док је код осталих парова разреда та разлика статистички значајна (у корист старијих разреда). Истраживање је потврдило да је утицај наставе на ниво разумевања топлотних феномена код ученика млађег школског узраста недовољан, што захтева налажење нових приступа реализацији наведених садржаја.

Кључне речи: почетна настава природних наука, топлотни феномени, постигнућа ученика, тест знања.

Summary: The method of interpreting thermal phenomena in the lower grades of primary school, which avoids explaining these phenomena based on the particle structure of a substance, gives room for pupils’ alternative ideas. The aim of this paper is to determine the level of pupils’ understanding of thermal phenomena in the lower grades of primary school. For this purpose we developed a test of knowledge of the following concepts: aggregate states of a substance, substance structure, temperature, heat, and heat conduction. The research was carried out in primary schools in the towns of Sombor and Kikinda and the sample consisted of 475 pupils. According to the obtained results, the lowest achievement, between 0% and 20% of the maximum points, is observed much more among the pupils of the first and second grades of primary school than among the pupils of the higher grades. In all
grades the majority of the pupils had between 20% and 40% of the maximum number of points. There were no pupils with the highest scores. There was no significant statistical difference in terms of achievement bewtween the first and second grade pupils, nor between the third and fourth grade pupils, whereas this difference is statistically significant in other, higher pairs of grades (the final two grades had the highest level of achievement). The research confirmed that there is an insufficient impact of instruction on the level of understanding thermal phenomena among the pupils of the lower grades, which requires finding new approaches to teaching this type of content.

Кeywords: initial science instruction, thermal phenomena, pupils’ achievement, test of knowledge

 

Литература

  • Allen, M. (2010). Misconceptions in Primary Science. New York: Open University Press.
    Alwan, A. A. (2011). Misconception of heat and temperature Among physics students. Procedia Social and Behavioral Sciences, 12, 600–614. http://www.doi.org/10.1016/j.sbspro.2011.02.074.
    Anam, R. S., Widodo, A. & Sopandi, W. (2017). Representation of Elementary School Teachers on Concept of Heat Transfer. IOP Conf. Series: Journal of Physics: Conf. Series 895 012159. http://www.doi.org/10.1088/1742-
    6596/895/1/012159.
  • Anderson, L. W. & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. New York: Longman.
  • Blagdanić, S., Radovanović, I. i Bošnjak Stepanović, M. (2019). Predubeđenja učenika o prirodnim fenomenima na početku osnovnog obrazovanja – okov i/ili mogućnost. Inovacije u nastavi, 32 (1), 16-29. http://www.doi.org/10.5937/inovacije1901016B
  • Chittleborough, G. & Hubber, P. (2013). Material world: learning and teaching chemistry, in Learning and teaching primary science. Melbourne: Cambridge University Press. Posećeno 23. februara 2021. na www:http://hdl.handle.net/10536/DRO/DU:30054636.
  • Cohen, J. W. (1988). Statistical power analysis for the behavioral sciences (2nd edn). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Cvjetićanin, S., Obadović, D. & Rančić, I. (2015). The Efficiency of Student-led and Demonstration Experiments
    in Initial Physics-Chemistry Education in Primary School. Croatian Journal of Education, 17, 11–39.
  • Erickson, G. L. (1979). Children’s conceptions of heat and temperature. Science Education, 63 (2), 221–230.
  • Fardin, D & Radmehr, F. (2013). A Study on K5 students’ mathematical problem solving based on Revised Bloom Taxonomy and psychological factors contribute to it. European Journal of Child development, 1, 97–123.
  • •• Fitzallen, N., Wright, S., Watson, J. & Duncan, B. (2016). Year 3 students’ conceptions of heat transfer. In: Proceedings of the 2016 Australian Association for Research in Education (AARE) Conference (1‒12). 27 November‒ 1 December 2016, Melbourne, Victoria, Australia.
  • Gagić, Z. Z., Skuban, S. J., Radulović, B. N., Stojanović, M. M. & Gajić, O. (2019). The implementation of mind maps in teaching physics: Educational efficiency and students’ involvement. Journal of Baltic Science Education, 18 (1), 117–131. http://www.doi.org/10.33225/jbse/19.18.117
  • Gerhátová, Ž., Perichta, P., Drienovský, M. & Palcut, M. (2021). Temperature Measurement ‒ Inquiry Based Learning Activities for Third Graders. Educ. Sci., 11 (9), 506. http://www.doi.org/10.3390/educsci11090506.
  • Haeusler, C. & Donovan, J. (2017). Challenging the Science Curriculum Paradigm: Teaching Primary Children Atomic-Molecular Theory. Res Sci Educ, 50 (1), 23–52. http://www.doi.org/10.1007/s11165-017-9679-2.
  • Haglund, J., Jeppsson, F. & Andersson, J. (2012). Young children’s analogical reasoning in science domains. Science Education, 96 (4), 725–756. http://www.doi.org/10.1002/sce.21009.
  • Haglund, Ј. Jeppsson, F. & Andersson, J. (2014). Primary school children’s ideas of mixing and of heat as expressed in a classroom setting. Journal of Baltic Science Education, 13 (5), 726–739. Posećeno 14. maja 2020.
    na www: http://oaji.net/articles/2015/987-1450981715.pdf.
  • Harlen, W. (2010). Principi i velike ideje naučnog obrazovanja. Beograd: Prosvetni pregled.
  • Hermita, N., Alpusari, M., Noviana, E., Kurniaman, O., Widyanthi, A. & Suhandi, A. (2019). A Study of Prospective Primary School Teachers’ Alternatif Conception in Heat and Temperature. Journal of Physics: Conference Series, 1351 012072. http://www.doi.org/10.1088/1742-6596/1351/1/012072.
  • Inaltekin, T. & Akcay, H. (2021). Examination the knowledge of student understanding of pre-service science teachers on heat and temperature. International Journal of Research in Education and Science, 7 (2), 445–478.
    http://www.doi.org/10.46328/ijres.1805.
  • Kampeza, M., Vellopoulou, A., Fragkiadaki, G. & Ravanis, K. (2016). The expansion thermometer in preschoolers’ thinking. Journal of Baltic Science Education, 15 (2), 185–193. http://www.doi.org/10.33225/
    jbse/16.15.185.
  • Kampeza, M. & Delserieys, A. (2019). Approaching change of state in early childhood education: the design of a teaching intervention based on storytelling. Educational Journal of the University of Patras UNESCO
    Chair, 6 (1), 89–98.
  • Kartal, Т., Öztürk, N. & Yalvaç, H. (2011). Misconceptions of science teacher candidates about heat and temperature. Procedia Social and Behavioral Sciences, 15, 2758–2763. http://www.doi.org/10.1016/j.sbspro.
    2011.04.184
  • Milanović-Nahod, S., Šaranović-Božanović, N. i Šišović, D. (2003). Uloga pojmova u nastavi prirodnih nauka. Zbornik Instituta za pedagoška istraživanja, 35, 111–130. Posećeno 20. jula 2016. na https://www.ipisr.
    org.rs/images/arhiva-zbornika/35/Uloga-pojmova.pdf.
  • Ozmen, H. (2011). Turkish primary students’ conceptions about the particulate nature of matter. International Journal of Environmental & Science Education, 6 (1), 99–121.
  • Pallant, J. (2010). SPSS survival manual: A step by step guide to data analysis using the SPSS program (4th Edition). New York: Mc Graw Hill.
  • Pravilnik o planu nastave i učenja za prvi ciklus osnovnog obrazovanja i vaspitanja i programu nastave i učenja za prvi razred osnovnog obrazovanja i vaspitanja (2017). Službeni glasnik RS, Prosvetni glasnik, br. 10.
  • Pravilnik o programu nastave i učenja za drugi razred osnovnog obrazovanja i vaspitanja (2018). Službeni glasnik RS, Prosvetni glasnik, br. 16.
  • Pravilnik o programu nastave i učenja za treći razred osnovnog obrazovanja i vaspitanja (2019). Službeni glasnik RS, Prosvetni glasnik, br. 6.
  • Pravilnik o programu nastave i učenja za četvrti razred osnovnog obrazovanja i vaspitanja (2019). Službeni glasnik
    RS, Prosvetni glasnik, br. 11.
  • Schönborn, K., Haglund, J. & Xie, C. (2014). Pupils’ early explorations of thermoimaging to interpret heat and temperature. Journal of Baltic Science Education, 13 (1), 118–132. http://www.doi.org/10.33225/jbse/14.13.118.
  • Segedinac, M., Segedinac, M., Konjović, Z. & Savić, G. (2011). A formal approach to organization of educational objectives. Psihologija, 44 (4), 307–323.
  • Smolleck, L. & Hershberger, V. (2011). Playing with Science: An Investigation of Young Children’s Science Conceptions and Misconceptions. Current Issues in Education, 14 (1), http://cie.asu.edu/ojs/index.php/cieatasu/article/view/
  • Sözbilir, M. (2003). A Review of Selected Literature on Students’ Misconceptions of Heat and Temperature. Boğaziçi University Journal of Education, 20 (1), 25–41.
  • Stavy, R. (1991). Children’s Ideas About Matter. School Science and Mathematics, 91 (6), 240–244. http://www.doi.org/10.1111/j.1949-8594.1991.tb12090.x
  • Wehnam, M. & Ovens, P. (2010). Understanding Primary Science. London: SAGE.

Copyright © 2022 by the authors, licensee Teacher Education Faculty University of Belgrade, SERBIA. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original paper is accurately cited

Language selection
Open Access Statement
345 Open access declaration can be found on this page

Information about copyright 345 Teaching Innovations are licensed with Creative Commons Attribution License (CC BY 4.0). Information about copyright can be found on this page.
Open Access Journal
345
Indexed by
345 This journal was approved on 2018-01-22 according to ERIH PLUS criteria for inclusion. Download current list of ERIH PLUS approved journals.
Indexed by
345 University of Belgrade, Teacher Education Faculty has entered into an electronic licensing relationship with EBSCO Information Services, the world's most prolific aggregator of full text journals, magazines and other sources. The full text of Teaching Innovations / Inovacije u nastavi is available now on EBSCO's international research databases.
Indexed by
345
Ethics statement
345 Publication ethics and publication malpractice statement can be found on this page.
Follow Teaching Innovations
345   345   345