Један примјер анализе аритметичког и раноалгебарског мишљења
Соња Стевановић, Гимназија „Светозар Марковић“, Нови Сад
Синиша Црвенковић, Департман за математику, Универзитет у Новом Саду
др Даниел А. Романо, Педагошки факултет Бијељина, Универзитет у Источном Сарајеву
Иновације у настави, XXVII, 2014/1, стр. 118–134
|PDF|
Резиме: Овај текст је допринос концептуализацији домена рана алгебра и појма раноалге барско мишљење у нашем основношколском образовном простору. Рад описује аритметичко-раноалгебарско мишљење о раним нумеричким операцијама свршених студената студијског програма за образовање наставника основне школе. Будући да се наставним програмом овог студијског програма очекује од студената да се баве алгебарским идејама које се односе на многе концепте са природним бројевима, чини нам се да се може формирати хипотеза да студенти не повезују оно што су научили у курсу Методика наставе математике са својим знањима о аритметичким концептима унутар полупрстена природних бројева. За поткрепљивање ове хипотезе ослонили смо се на интервјуе са кандидатима на стручним учитељским испитима, при чему смо се бавили алгебарским садржајима инкорпорираним у неке аритметичке концепте. Овај текст – о инволвирању алгебарских идеја у аритметички концепт „одузимања броја од збира“ ‒ парцијални је извјештај о тим интервјуима. На основу наших сазнања из поменутих разговора са кандидатима, при чему им је презентована могућност реализације ове наставне јединице прихватањем концепта рана алгебра, процјењујемо да су кандидати способни да направе неку везу, али да постоје индивидуалне разлике у успјешностиу тим конекцијама.
Кључне ријечи: аритметичко и раноалгебарско мишљење.
Summary: This text is our contribution to conceptualization of the domain early algebra and the term early algebraic thinking in our primary school education. Th e paper describes arithmetic – early algebraic thinking about early numeric operations of graduated students from the faculties of education. According to this curriculum, students are expected to deal with algebraic ideas referring to many concepts of natural numbers, and we can form the hypothesis that students can connect what they have learnt at the course Teaching Methodology of Mathematics with their knowledge about arithmetic concepts within the semi circle of natural numbers. We justifi ed this hypothesis by interviews with candidates at teachers’ exams, and we dealt with algebraic contents incorporated into same arithmetic concepts. Th is text about involving algebraic ideas into algebraic concept of “subtracting the number from the sum” is a partial review about these interviews. Based on our knowledge about the mentioned talks with candidates, and on this occasion they were given the possibility of realization of this teaching unit accepting the concept of early algebra, so we can estimate that candidates are capable of making a certain connection, but that there are individual diff erences in achievement in these connections..
Key words: arithmetic and early algebraic thinking.
Литература:
- Липовац, Д. (2008). Математика 3. Источно Сарајево: Завод за уџбенике и наставна средства.
- Романо, Д. А. (2009а). Теорије математичког образовања, Први дио: Теорија реалистичког математичког образовања. ИМО, Вол. I, 1, 23‒35.
- Романо, Д. А. (2009). Шта је алгебарско мишљење? MAT-КОЛ, XV(2), 19‒29.
- Ainley, J. (1999). Doing Algebra-Type Stuff : emergent algebra in the primary school. In: Zaslavsky, O. (Ed.). Proceedings of the Twenty Th ird Annual Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (9‒16). Haifa, Israel.
- Ainley, J. (2001). Research forum: Early algebra. In: Van den Heuvel-Panhuizen, M. (Ed.). Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, Vol.1 (129‒159). Utrecht, Th e Netherlands.
- Bednarz, N., Radford, L., Janvier, B. and Lepage, A. (1992). Aritmetical and algebraic thinking in problemsolving. In: Geeslin, W. and Graham, K. (Eds.). Proceedings of the 16th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1 (65‒72). Durham, NH.
- Bellisio, C. & Maher, C. (1998). What kind of notation do children use to express algebraic thinking? In: Berenson, S. et al. (Eds.). Proceedings of the XX Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (161‒165). Columbus, OH, ERIC Clearinghouse.
- Blanton, M. & Kaput, J. (2000). Generalizing and progressively formalizing in a third grade mathematics classroom: Conversations about even and odd numbers. In: Fernández, M. (Ed.). Proceedings of the XXII Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics
Education (115). Columbus, OH, ERIC Clearinghouse. - Blanton, M. and Kaput, J. (2003). Developing elementary teachers’ „algebra eyes and ears“. Teaching Children Mathematics, 10 (2), 70‒83.
- Booth, L. R. (1989). A question of structure or a reaction to: „the early learning algebra: a structural perspective“. In: Wagner, S. and Kieran, C. (Eds.). Research Issues in the Learning and Teaching of Algebra, Vol. 4 (57‒59). Reston, VA: Lawrence Erlbaum Associates and NCTM.
- Brito-Lima, A. P. & da Rocha Falcão, J. T. (1997). Early development of algebraic representation among 6‒13 year-old children. In: Pehkonen, E. (Ed.). Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (201‒208). Lahti, Finland.
- Brousseau, G. (1997). Th eory of Didactical Situations in Mathematics. Kluwer: Academic Publisher.
- Carraher, D. W., Schliemann, A. D., & Schwartz, J. L. (2007). Early algebra is not the same as algebra early. In: Kaput, J., Carraher, D. & Blanton, M. (Eds.). Algebra in the early grades (235–272). Mahwah: Erlbaum.
- Carpenter, T. P. & Levy, L. (2000). Developing conceptions of algebraic reasoning in the primary grades. (Res. Rep. 00-2). Madison, WI: National Center for Improving Student Learning and Achievement in Mathematics and Science.
- Carpenter, T. P., Leof Franke, M. and Levi, L. (2003). Th inking Mathematically: Integrating Arithmetic and Algebra in Elementary School. Portsmouth, NH, Heinemann.
- Carraher, D., Schliemann, A. & Brizuela, B. (2001). Can young students operate on unknowns? In: Van den Heuvel-Panhuizen, M. (Ed.). Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1 (130‒140). Utrecht, Th e Netherlands.
- Da Rocha Falcao, J. T., Brito Lima, A. P., Araújo, C. R., Lins Lessa, M. M. & Osório, M. O. (2000). A didactic sequence for the introduction of algebraic activity in early elementary school. In: Nakahara, T. & Koyama, M. (Eds.). Proceedings of the 24th Conference of the International group for the Psychology of Mathematics
Education, Vol. 2 (209‒216). Hiroshima, Japan. - Davis, R. B. (1964). Discovery in mathematics: A text for teachers. Palo Alto, CA: Addison-Wesley. Davis, R. B. (1971/72). Observing children’s mathematical behavior as a foundation for curriculum planning. Th e Journal of Children’s Mathematical Behavior, 1 (1), 7‒59. Davis, R. B. (1985). ICME-5 Report: Algebraic thinking in the early grades. Journal of Mathematical Behavior, 4, 195‒208.
- Davis, R. B. (1989). Th eoretical considerations: Research studies in how humans think about algebra. In: Wagner, S. & Kieran, C. (Eds.). Research Issues in the Learning and Teaching of Algebra, Vol. 4 (266‒274). Reston, VA, NCTM/Erlbaum.
- Davydov, V. (1991/1969). Soviet studies in mathematics education, Vol. 6. Psychological abilities of primary school children in learning mathematics. Reston, VA, NCTM.
- Freudenthal, H. (1991). Revisiting Mathematics Education. China Lectures. Dordrecht: Kluwer Academic Publishers.
- Herscovics, N. and Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27, 59‒78.
- Kaput, J. (1999). Teaching and Learning a New Algebra. In: Fennema, E. and Romberg, A. T. (Eds.). Mathematics classrooms that promote understanding (133‒155). Mahwah, New Jersey: Lawrence Erlbaum Associates.
- Kieran, C. (1997). Mathematical concept at the secondary school level: Th e learning of algebra and functions. In: Bednarz, N., Bryant, P. and Lee, L. (Eds.). Learning and teaching mathematics: An international perspectives (133‒158). Psychology Press.
- Kieran, C. (2004). Algebraic Th inking in the Early Grades: What is it?. Th e Mathematics Educator, 8 (1), 139‒151.
- Kindt, M. (1980). Als een kat om de hete algebrij [As a cat around the algebra]. De Wiskrant, Tijadschrift voor Nederlands Wiskundeonderwijs, 5(21), 155‒157.
- Koehler, J. L. (2004). Learning to think relationally: thinking relationally to learn. Dissertation Research Proposal, University of Wisconsin-Madison.
- Lee, L. (1996). An initiation into algebraic culture through generalization activities. In: Bednarz, N., Kieran, C. and Lee, E. (Eds.). Approaches to Algebra. Kluwer: Academic Publishing.
- Leron, U. (2010). Porijeklo matematičkog mišljenja. IMO, Vol. II, broj 2, 21‒25. Liebenberg, R., Sasman, M. and Olivier, A. (1999). From Numerical Equivalence To Algebraic Equivalence.Mathematics Learning and Teaching Initiative (MALATI). Paper presented at the 5th annual conference of the Mathematics Education Associations of South Africa (AMESA), Puerto Elizabeth, July 5‒9. Linchevski, L. (1995). Algebra with numbers and arithmetic with letters: A defi nition of pre-algebra. Journalof Mathematical Behavior, 14, 113‒120.
- Mason, J. (2012). What is Arithmetic? In: Van Zanten, M. (Ed.). Opbrengstgericht Onderwijs Rekenen! Wiskiunde? (11‒24). Proceedings of the 30th PANAMA Conference. Utrecht: Fisme. Molina, M., Castro E. y Ambrose R. (2005). Enriching Arithmetic Learning by Promoting Relational Th inking. Th e International Journal of Learning, 12(5), 265‒270.
- Redford, L. (2006). Algebraic Th inking and Generalization of Patterns: A Semiotic Perspective. In: Alatorre, S., Cortina, J. L., Sáiz, M. and Méndez, A. (Eds.). Proceedings of the 28th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Vol. 1 (2‒21). Mérida, Yucatán, México.
- Radford, L. (2009). Teorije u matematičkom obrazovanju: Jedna kratka studija o njihovim konceptualnim razlikama, IМО, Vol. I, broj 1, 11‒22.
- Radford, L. (2010). Elementary forms of algebraic thinking in young students. In: Pinto, M. F. & Kawasaki, T. F. (Eds.). Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4 (73‒80).
- Radford, L. (2012). On the development of early algebraic thinking. PNA, 6 (4), 117‒133.
- Radford, L. (2012 – In press). Early algebraic thinking epistemological, semiotic and developmental issues. Proceeding of the 12th International Congress on Mathematical Education. COEX, Seoul, Korea (In press).
- Sfard, A. (1991). On the dual nature of mathematics conceptions: Refl ections on processes and objects as diff erent sides of some coin. Educational Studies in Mathematics, 22, 1‒36.
- Slavit, D. (1999). Th e role of operation sense in transitions from arithmetic to algebraic thought. Educational Studies in Mathematics, 37 (3), 251‒274.
- Specht, B. J. (2005). Early Algebra – Processes and Concepts of Fourth Grades Solving Algebraic Problems. In: Bosch, M., Perpiñán, M., Àngels Portabella, M. and Llull, R. (Eds.). Proceedings of the 4th Congress of the European Society for Research in Mathematics Education (706‒716). Sant Feliu de Guíxols, Spain.
- Tall, D. O. (2001). Refl ection on Early Algebra. In: Van den Heuvel-Panhuizen, M. (Ed.). Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1 (149‒152). Utrecht, Th e Netherlands.
- Van den Heuvel-Panhuizen, M. (1996). Assessment and Realistic Mathematics Education. Utrecht: CD-Beta Press. Also publ. as thesis Universiteit Utrecht.