Historical activities in the mathematics classroom: Tartaglia’s Nova Scientia (1537)
Mª Rosa Massa Esteve, PhD,Universitat Politècnica de Catalunya, Centre de Recerca per a la Història de la Tècnica, Barcelona, Spain, e-mail: m.rosa.massa@upc.edu
Teaching Innovations, 2014, Volume 27, Issue 3, pp. 114–126
|PDF|
Abstract: Th e History of Mathematics can be developed both implicitly and explicitly in the classroom. Learning about the history of mathematics can therefore contribute to improving the integral education and training of students. Th e aim of this paper is to analyze the proposal of an historical activity based on the work Nova Scientia (1537) by Tartaglia for use in the mathematics classroom. Th is analysis will show the use of a Renaissance mathematical instrument for measuring the height of a mountain in order to motivate the study of trigonometry in the mathematics classroom, as well as to show students the explanatory role of mathematics in regard to the natural world.
Key words: History of mathematics, teaching, Niccolò Tartaglia, Nova Scientia, geometry.
Историјске активности на часовима математике: Тартаљина Nova Scientia (1537)
Историјски садржаји математике могу да се развијају и имплицитно и експлицитно на часовима.Учење о историји математике може да допринесе побољшању интегралног образовања и оспособљавања ученика. Историју математике, као имплицитни извор, наставници могу да користе да би осмислили фазу часа користећи различите контексте, припремајући наставне активности (проблемске ситуације и помоћне изворе за сазнавање) и креирајући наставни силабус у функцији формирања појмова или идеја. Осим као имплицитном средству за побољшање учења математике, историја математике може да се користи експлицитно у разреду ради поучавања математике. Имплементација важних историјских текстова може да обезбеди средства која ће ученицима омогућити да боље разумеју математички појам. Циљеви имплементације историјске активности на часовима математике су: а) учење о изворима на којима се заснива знање математике у прошлости; б) препознавање најзначајнијих промена у математичким дисциплинама − оне које су утицале на структуру и класификацију, на њене методе, основне појмове и везу са другим наукама; в) указивање ученицима на социокултурну везу математике и политике, религије, филозофије и културе, у сваком периоду, као и везе са осталим сферама, и коначно, што је најважније, подстицање ученика да се изразе у вези са математичком мишљу и трансформацијом природне филозофије. Циљ овог рада је анализа студије случаја предлога историјске активности, базиране на раду „Nova Scientia“ (1537) Никола Фонтане Тартаље (Niccolò Fontana Tartaglia (1499/1500–1557)), за коришћење на часовима математике. Ова анализа ће показати употребу ренесансног математичког инструмента за мерење висине планине да би се мотивисало проучавање тригонометрије на часовима математике, као и показивање улоге математике у објашњавању природног света. Штавише, у раду разматрамо да ли рад на инструментима и мерења помоћу њих, препоручиваних корисницима у прошлости, омогућавају ученицима у садашњости адекватно вредновање мерењем инструментима из прошлости.
Кључне речи: историја математике, поучавање, Николо Тартаља, „Nova Scientia“, геометрија.
References:
- Bashmakova, I., Smirnova, G. (2000). Th e Beginnings & Evolution of Algebra. A. Shenitzer (Trans.), Washington:
Th e Mathematical Association of America. - Bennett, J., Johnston, S. (1996). Th e Geometry of War 1500-1750. Oxford: Museum of the History of Science.
- Calinger, R., (ed.) (1996). Vita Mathematica. Historical research and Integration with teaching. Washington:
Th e Mathematical Association of America. - Demattè, A. (2006). Fare matematica con i documenti storici. Una raccolta per la scuola secondaria di primo e
secondo grado. Trento: Editore Provincia Autonoma di Trento – IPRASE del Trentino. - Ekholm, K. J. (2010). Tartaglia’s ragioni : A maestro d’abaco’s mixed approach to the bombardier’s problem.
British Journal for the History of Science, 43 (2), 181-207. - Fauvel, J. and Maanen, J. V. (ed.) (2000). History in mathematics education: the ICMI study. Dordrecht: Kluwer.
- Gavagna, V. (2010). L’insegnamento dell’aritmetica nel General Trattato di N. Tartaglia. In: Pizzamiglio, P.
(ed.), Atti della giornata di studio in memoria di Niccolò Tartaglia, Brescia: Commentari dell’Ateneo di Brescia
Suppl. - Gessner, S. (2010). Savoir manier les instruments: la géométrie dans les écrits italiens d’architecture (1545-
1570). Revue d’histoire des Mathématiques, 16 (1), 1-62. - Giusti, E. (2010). L’insegnamento dell’algebra nel General Trattato di N. Tartaglia. In: Pizzamiglio, P. (ed.),
Atti della giornata di studio in memoria di Niccolò Tartaglia, Brescia: Commentari dell’Ateneo di Brescia
Suppl. - Guevara, I., Massa, Mª R. and Romero, F. (2008). Enseñar Matemáticas a través de su historia: algunos
conceptos trigonométricos. Epsilon, 23 (1 and 2), 97-107. - Hall, R. R. (1981). La primera tecnología moderna hasta 1600. In: Kranzberg, M. and Pursell, Jr. C. W. (ed.).
Historia de la Tecnología. La Técnica en Occidente de la Prehistoria a 1900. Barcelona: Gustavo Gili, S. A. - Heath, T. L. (ed.) (1956). Euclid. Th e thirteen Books of the Elements. New York: Dover.
- Heering, P. (2012). Developing and evaluating visual material on historical experiments for physics teachers:
Considerations, Experience, and Perspectives. In: Bruneau, O., Heering, P., Laubé, S., Massa-Esteve, M. R.
and Vitori, T. (ed.). Innovative Methods for Science Education: History of Science, ICT and Inquiry Based Science
Teaching. Berlin: Frank & Timme GmbH. - Henninger-Voss, M. J. (2002). How the “New Science” of Cannons Shook up the Aristotelian Cosmos. Journal
of the History of Ideas, 63 (3), 371-397. - Jahnke, H. N., Knoche, N., Otte, M. and Aspray, W. (1996). History of Mathematics and Education: Ideas and
Experiences. Göttingen: Vandenhoeck und Ruprecht. - Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education.
Educational Stusies in Mathematics, 71 (3), 235-261. - Katz, V. (ed.) (2000). Using history to Teach Mathematics. An International Perspective. Washington, D. C.:
Th e Mathematical Association of America. - Katz, V. & Tzanakis, C. (ed.) (2011). Recent developments on introducing a historical dimension in mathematics
education. Washington, D. C.: Th e Mathematical Association of America. - Lawrence, S. (2012). Inquiry Based mathematics teaching and the history of mathematics in the English curriculum.
In: Bruneau, O., Heering, P., Laubé, S., Massa-Esteve, M. R. and Vitori, T. (ed.). Innovative Methods
for Science Education: History of Science, ICT and Inquiry Based Science Teaching. Berlin: Frank & Timme
GmbH. - Massa Esteve, M. R. (2003). Aportacions de la història de la matemàtica a l’ensenyament de la matemàtica.
Biaix, 21, 4–9. - Massa Esteve, M. R. (2005a). Les equacions de segon grau al llarg de la història. Biaix, 24, 4-15.
- Massa Esteve, M. R. (2005b). L’ensenyament de la trigonometria. Aristarc de Samos (310–230 aC.). In: Grapi,
P. and Massa, M. R. (eds.). Actes de la I Jornada sobre la història de la ciència i l’ensenyament. Barcelona:
Societat Catalana d’Història de la Ciència i de la Tècnica. - Massa Esteve, Mª R and Romero, F. (2009). El triangle aritmètic de Blaise Pascal (1623-1662). Biaix, 29, 6-17.
- Massa Esteve, Mª R. (2010). Understanding Mathematics through its History. In: Hunger, H. (ed.). Proceedings
of the 3rd International Conference of the European society for the History of Science. Vienna: European
Society for the History of Science. - Massa-Esteve, M. R., Guevara, I, Romero, F. and Puig-Pla, C. (2011). Understanding Mathematics using
original sources. Criteria and Conditions. In: Barbin, E., Kronfellner and M., Tzanakis, C. (eds). History and
Epistemology in Mathematics Education. Proceedings of the Sixth European Summer University. Vienna: Verlag
Holzhausem GmbH. - Massa-Esteve, M. R. (2012). Th e Role of the History of Mathematics in Teacher Training using ICT. In:
Bruneau, O., Heering, P. , Laubé, S., Massa-Esteve, M. R. and Vitori, T. (ed.). Innovative Methods for Science
Education: History of Science, ICT and Inquiry Based Science Teaching. Berlin: Frank & Timme GmbH. - Massa Esteve, M. R. (2014). Álgebra y geometría en el aula: la construcción geométrica de la solución de la
ecuación de segundo grado. In: Blanco, M. (coord.). Enseñanza e Historia de las Ciencias y de las Técnicas:
Orientación, Metodologías y Perspectivas. Barcelona: SEHCYT. - Panagiotou, E. N. (2011). Using History to Teach Mathematics: Th e Case of Logarithms. Science & Education,
20, 1-35. - Roca-Rosell, A. (2011). Integration of Science education and History of Science: Th e Catalan Experience.
In: Kokkotas, P. V., Malamitsa, K. S. and Rizaki, A. A. (ed.). Adapting Historical Knowledge Production to the
Classroom. Rotterdam: Sense Publishers. - Romero, F. and Massa, M. R. (2003). El teorema de Ptolemeu. Biaix, 21, 31–36.
- Romero, F., Guevara, I. and Massa, M. R. (2007). Els Elements d’Euclides. Idees trigonomètriques a l’aula. In:
Grapi, P. and Massa, Mª R. (ed.). Actes de la II Jornada sobre Història de la Ciència i Ensenyament «Antoni
Quintana Marí». Barcelona: Societat Catalana d’Història de la Ciència i de la Tècnica. - Romero, F., Puig-Pla, C., Guevara, I. and Massa, M. R. (2009). La trigonometria en els inicis de la matemàtica
xinesa. Algunes idees per a treballar a l’aula. Actes d’Història de la Ciència i de la Tècnica, 2 (1), 419-426. - Rose, P. L. (1975). Th e Italian Renaissance of Mathematics: Studies on Humanists and Mathematicians from
Petrarch to Galileo. Geneva: Libraire Droz. - Stilwell, J. (2010) (First ed. 1989). Mathematics and Its History. Berlin: Springer.
- Tartaglia, N. (1537). Nova Scientia, Venice.
- Tartaglia, N. (1998). La Nueva Ciencia. Introduction and translation with notes (R. Martínez and C. Guevara),
Col·lection MATHEMA, México D. F.: Facultad de Ciencias, UNAM. - Valleriani, M. (2013). Metallurgy, Ballistics and Epistemic Instruments. Th e Nova Scientia of Nicolò Tartaglia.
A New Edition. Max Planck Research Library for the History and Development of Knowledge. Sources 6.
Berlin: Edition Open Acces. Retrieved November 6, 2014. from www: http://www.edition-open-sources.org/ - Zeller, S. M. C. (1944). Th e Development of trigonometry from Regiomontanus to Pitiscus. Michigan: University
of Michigan, Ann Astor.